If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x-273=0
a = 1; b = -18; c = -273;
Δ = b2-4ac
Δ = -182-4·1·(-273)
Δ = 1416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1416}=\sqrt{4*354}=\sqrt{4}*\sqrt{354}=2\sqrt{354}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{354}}{2*1}=\frac{18-2\sqrt{354}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{354}}{2*1}=\frac{18+2\sqrt{354}}{2} $
| (4x+5)+(6x+2)+9x=4100 | | 9x=5.5 | | 8x+2x+x=1188 | | 3+2y/2+5y=7/2 | | F(x)=2x+1.5 | | 3x^+7x-13=0 | | {100}/{x^2}=0 | | 9(a+4)=5(a-4) | | {100}{x^2}=0 | | b/0.1=-25 | | a/48=0.1 | | 148c=-37 | | 3(3x+1)-98(2x-3)+1=0 | | ?x9=28 | | 2x+20=20-3x | | 10=x-(9/10)x | | 8=2(x-5)+6) | | 5^-x+5^x=626/25 | | X^2+y^-18y-19=0 | | x+x*0.2=8186 | | x+x+29+x55=135 | | x+x*0.2=7483 | | 4x+36=6x-4 | | 4x+56=6x-4 | | 11x+33=9x-3 | | 90z=81 | | 3(4x+1)-(2x-9)=24 | | 8-6x=6x+27 | | 2(4-3x)=3(2x+9) | | 2(2-s)=-2(3s-1) | | 225=45x | | 3w+1=2w-11 |